Aircraft Hangars

Aircraft Hangars

Aircraft Hangar

aircraft_metal_buildings
aircraft_silder_2
aircraft_silder_3

Aircraft Hangar Steel buildings first gained popularity in the early 20th century. Their use became more widespread during World War II and significantly expanded after the war when steel became more available. Aircraft Hangar Steel buildings have been widely accepted, in part due to cost efficiency. The range of application has expanded with improved materials, products and design capabilities with the availability of computer aided design software World War II and significantly expanded after the war when steel became more available. Steel buildings have been widely accepted, in part due to cost efficiency. The range of application has expanded with improved materials, products and design capabilities with the availability of computer aided design software.

Advantages

Steel provides several advantages over other building materials, such as wood

  • Steel is a “green” product; it is structurally sound and manufactured to strict specifications and tolerances. It is also energy efficient. Any excess material is 100% recyclable.
  • Steel does not easily warp, buckle, twist or bend, and is therefore easy to modify and offers design flexibility. Steel is also easy to install.
  • Steel is cost effective and rarely fluctuates in price.
  • Steel allows for improved quality of construction and less maintenance, while offering improved safety and resistance.
  • With the propagation of mold and mildew in residential buildings, using steel minimizes these infestations. Mold needs moist, porous material to grow. Steel studs do not have those problems.

Components

Building portions that are shop assembled prior to shipment to site are commonly referenced as pre-fabricated. The smaller steel buildings tend to be pre-fabricated or simple enough to be constructed by anyone. The larger steel buildings require skilled construction workers, such as ironworkers, to ensure proper and safe assembly.

There are five main types of structural components that make up a steel frame – tension members, compression members, bending members, combined force members and their connections. Tension members are usually found as web and chord members in trusses and open web steel joists. Ideally tension members carry tensile forces, or pulling forces, only and its end connections are assumed to be pinned. Pin connections prevent any moment(rotation) or shear forces from being applied to the member.

Compression members are also considered as columns, struts, or posts. They are vertical members or web and chord members in trusses and joists that are in compression or being squished. Bending members are also known as beams, girders, joists, spandrels, purlins, lintels, and girts. Each of these members have their own structural application, but typically bending members will carry bending moments and shear forces as primary loads and axial forces and torsion as secondary loads. Combined force members are commonly known as beam-columns and are subjected to bending and axial compression. Connections are what bring the entire building together. They join these members together and must ensure that they function together as one unit.[/


Quick Quote
close slider

First Name:

Last Name:

Your email:

State:

Phone:

Width:

Length: